Cheat Sheet 2: Sine Rule and Cosine Rule

Simon Harris

December 14, 2008

1 The Sine Rule

For any triangle, given the sides a, b and c and their corresponding opposite angles A, B and C :

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{aligned}
$$

So, given two sides and a corresponding angle, or two angles and a corresponding side, the triangle can be solved.

2 The Cosine Rule

Given two sides plus the angle between them: ${ }^{1}$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=c^{2}+a^{2}-2 c a \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Given 3 sides but no angle, this form is more convenient:

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

3 The General Component Form

For converting a vector from geometric to component form:

$$
\mathbf{a}=|\mathbf{a}| \cos \theta \mathbf{i}+|\mathbf{a}| \sin \theta \mathbf{j}
$$

[^0]
[^0]: ${ }^{1}$ This is a generalisation of Pythagoras' Theorem, to which it reduces if the angle is 90°

